splinec.f90 Source File

Provides spline functions


Files dependent on this one

sourcefile~~splinec.f90~~AfferentGraph sourcefile~splinec.f90 splinec.f90 sourcefile~pchipmod.f90 pchipMod.f90 sourcefile~pchipmod.f90->sourcefile~splinec.f90 sourcefile~sspmod.f90 sspMod.f90 sourcefile~sspmod.f90->sourcefile~splinec.f90 sourcefile~sspmod.f90->sourcefile~pchipmod.f90 sourcefile~bellhop.f90 bellhop.f90 sourcefile~bellhop.f90->sourcefile~sspmod.f90 sourcefile~influence.f90 influence.f90 sourcefile~bellhop.f90->sourcefile~influence.f90 sourcefile~readenvironmentbell.f90 ReadEnvironmentBell.f90 sourcefile~bellhop.f90->sourcefile~readenvironmentbell.f90 sourcefile~step.f90 Step.f90 sourcefile~bellhop.f90->sourcefile~step.f90 sourcefile~writeray.f90 WriteRay.f90 sourcefile~bellhop.f90->sourcefile~writeray.f90 sourcefile~bellhop3d.f90 bellhop3D.f90 sourcefile~bellhop3d.f90->sourcefile~sspmod.f90 sourcefile~bellhop3d.f90->sourcefile~influence.f90 sourcefile~influence3d.f90 influence3D.f90 sourcefile~bellhop3d.f90->sourcefile~influence3d.f90 sourcefile~bellhop3d.f90->sourcefile~readenvironmentbell.f90 sourcefile~reflect3dmod.f90 Reflect3DMod.f90 sourcefile~bellhop3d.f90->sourcefile~reflect3dmod.f90 sourcefile~reflectmod.f90 ReflectMod.f90 sourcefile~bellhop3d.f90->sourcefile~reflectmod.f90 sourcefile~step3dmod.f90 Step3DMod.f90 sourcefile~bellhop3d.f90->sourcefile~step3dmod.f90 sourcefile~bellhop3d.f90->sourcefile~writeray.f90 sourcefile~influence.f90->sourcefile~sspmod.f90 sourcefile~influence.f90->sourcefile~writeray.f90 sourcefile~influence3d.f90->sourcefile~sspmod.f90 sourcefile~influence3d.f90->sourcefile~writeray.f90 sourcefile~readenvironmentbell.f90->sourcefile~sspmod.f90 sourcefile~reflect3dmod.f90->sourcefile~sspmod.f90 sourcefile~reflectmod.f90->sourcefile~sspmod.f90 sourcefile~step.f90->sourcefile~sspmod.f90 sourcefile~step3dmod.f90->sourcefile~sspmod.f90 sourcefile~writeray.f90->sourcefile~sspmod.f90

Source Code

!! Provides spline functions

MODULE splinec
  !! Cubic spline interpolation functions and procedures

  IMPLICIT NONE
  PUBLIC

CONTAINS

SUBROUTINE CSPLINE (TAU, C, N, IBCBEG, IBCEND, NDIM)

  !  TAKEN FROM "A PRACTICAL GUIDE TO SPLINES", BY CARL DE BOOR. 1978.
  !  SPRINGER-VERLAG.  THE INPUT PARAMETER "NDIM" HAS BEEN ADDED TO
  !  ALLOW FOR MULTIPLE CALLS WITH DIFFERENT VALUES OF N. - DENNIS DUNDORE

  !  SUBSTANTIAL MODIFICATIONS MADE BY STEVE WALES, APRIL 1983,
  !  PRINCIPALLY TO HANDLE COMPLEX NUMBERS (C) & UPDATE THE FORTRAN.

  ! *****************************  I N P U T  ****************************

  !  N = NUMBER OF DATA POINTS.  ASSUMED TO BE .GE. 2.

  !  (TAU(I), C(1,I),I=1,...,N) = ABSCISSAE AND ORDINATES OF THE DATA
  !      POINTS.  TAU IS ASSUMED TO BE STRICTLY INCREASING.

  !  IBCBEG, IBCEND = BOUNDARY CONDITION INDICATORS, AND
  !  C(2,1), C(2,N) = BOUNDARY CONDITION INFORMATION.  SPECIFICALLY,
  !      IBCBEG = 0 IMPLIES NO BOUNDARY CONDITION AT TAU(1) IS GIVEN.
  !            IN THIS CASE, THE "NOT-A-KNOT" CONDITION IS USED, IE THE
  !            JUMP IN THE 3-RD DERIVATIVE ACROSS TAU(2) IS FORCED TO 0.,
  !            THUS THE 1-ST AND 2-ND POLYNOMIAL PIECES ARE MADE TO
  !            COINCIDE.
  !      IBCBEG = 1 IMPLIES THAT THE SLOPE AT TAU(1) IS SET EQUAL TO C(2,1)
  !            INPUT BY USER.
  !      IBCBEG = 2 IMPLIES THAT THE 2-ND DERIVATIVE AT TAU(1) IS SET EQUAL
  !            TO C(2,1), SUPPLIED BY INPUT.
  !      IBCEND = 0, 1, OR 2 HAS ANALOGOUS MEANING CONCERNING THE BOUNDARY
  !            CONDITION AT TAU(N), WITH INFORMATION SUPPLIED BY C(2,N).

  !  NDIM = ROW DIMENSION OF C MATRIX:  C(4,NDIM)

  ! **************************  O U T P U T  ****************************

  !  C(J,I), J=1,...,4;  I=1,...,L=N-1  =  THE POLY COEFFS OF THE CUBIC
  !      SPLINE WITH INTERIOR KNOTS TAU(2),...,TAU(N-1).  PRECISELY, IN THE
  !      INTERVAL (TAU(I), TAU(I+1)), THE SPLINE F IS GIVEN BY

  !       F(X) = C(1,I) + H*(C(2,I) + H*(C(3,I)/2. + H*C(4,I)/6.))

  !      WHERE H = X - TAU(I).

  !     THE COEFFICIENTS CALCULATED ARE, 1) THE VALUE, 2) THE SLOPE, AND
  !     3) THE CURVATURE AT EACH OF THE KNOTS 1 TO N-1, AND 4) THE RATE OF
  !     CHANGE OF THE CURVATURE OVER THE FOLLOWING INTERVAL.  IN ADDITION,
  !     WE HAVE THE VALUE AND THE SLOPE AT THE LAST POINT. THE LAST TWO
  !     POSTIONS AT THE LAST POINT ARE THEN SET TO THE CURVATURE AT THAT
  !     POINT (IN C(3,N)) AND THE MEAN VALUE OVER THE ENTIRE INTERVAL,
  !     CALCULATED AS THE INTEGRAL OVER THE INTERVAL DIVIDED BY THE LENGTH
  !     OF THE INTERVAL (IN C(4,N)).

  ! **********************************************************************

  INTEGER, INTENT(IN) :: N, IBCBEG, IBCEND, NDIM
  REAL    (KIND=8), INTENT(IN)  :: TAU(N)
  COMPLEX (KIND=8), INTENT(INOUT) :: C(4,NDIM)

  ! Local variables
  INTEGER :: L, M, I, J
  COMPLEX (KIND=8) :: G, DTAU, DIVDF1, DIVDF3

  L = N - 1

  DO M = 2,N
     C(3,M) = TAU(M) - TAU(M-1)
     C(4,M) = (C(1,M) - C(1,M-1)) / C(3,M)
  END DO

  !   * BEGINNING BOUNDARY CONDITION SECTION *

  IF (IBCBEG==0)  THEN                           ! IBCBEG = 0
     IF (N>2)  THEN                            !     N > 2
        C(4,1) = C(3,3)
        C(3,1) = C(3,2) + C(3,3)
        C(2,1) = ((C(3,2) + 2.0*C(3,1))*C(4,2)*C(3,3) + &
             C(3,2)**2 * C(4,3)) / C(3,1)
     ELSE                                       !     N = 2
        C(4,1) = (1.0,0.0)
        C(3,1) = (1.0,0.0)
        C(2,1) = 2.0 * C(4,2)
     END IF

  ELSE IF (IBCBEG==1)  THEN                      ! IBCBEG = 1
     C(4,1) = (1.0,0.0)
     C(3,1) = (0.0,0.0)

  ELSE IF (IBCBEG==2)  THEN                      ! IBCBEG = 2
     C(4,1) = (2.0,0.0)
     C(3,1) = (1.0,0.0)
     C(2,1) = 3.0*C(4,2) - C(2,1)*C(3,2)/2.0
  END IF

  !   * RUNNING CALCULATIONS TO N-1 - LOOP IS NOT EXECUTED IF N = 2 *

  DO M = 2,L
     G = -C(3,M+1) / C(4,M-1)
     C(2,M) = G*C(2,M-1) + 3.0*(C(3,M)*C(4,M+1) + C(3,M+1)*C(4,M))
     C(4,M) = G*C(3,M-1) + 2.0*(C(3,M) + C(3,M+1))
  END DO

  !   * ENDING BOUNDARY CONDITION SECTION *

  IF (IBCEND /= 1)  THEN
     IF (IBCEND==0)  THEN
        IF (N==2 .AND. IBCBEG==0)  THEN
           C(2,N) = C(4,N)
        ELSE IF ((N==3 .AND. IBCBEG==0) .OR. N==2)  THEN
           C(2,N) = 2.0 * C(4,N)
           C(4,N) = (1.,0.)
           G = -1.0 / C(4,N-1)
        ELSE
           G = C(3,N-1) + C(3,N)
           C(2,N) = ((C(3,N) + 2.0*G) * C(4,N)*C(3,N-1) + &
                C(3,N)**2 * (C(1,N-1)-C(1,N-2)) / C(3,N-1)) / G
           G = -G / C(4,N-1)
           C(4,N) = C(3,N-1)
        END IF

     ELSE IF (IBCEND==2)  THEN
        C(2,N) = 3.0 * C(4,N) + C(2,N)*C(3,N)/2.0
        C(4,N) = (2.0,0.0)
        G = -1.0 / C(4,N-1)
     END IF

     IF ( IBCBEG>0 .OR. N>2)  THEN
        C(4,N) = G*C(3,N-1) + C(4,N)
        C(2,N) = (G*C(2,N-1) + C(2,N)) / C(4,N)
     END IF
  END IF

  !   * RUN THE ENDING BOUNDARY EFFECT BACK THROUGH THE EQUATIONS *

  DO J = L,1,-1
     C(2,J) = (C(2,J) - C(3,J)*C(2,J+1)) / C(4,J)
  END DO

  !   * FINAL CALCULATIONS *

  DO I = 2,N
     DTAU = C(3,I)
     DIVDF1 = (C(1,I)-C(1,I-1)) / DTAU
     DIVDF3 = C(2,I-1) + C(2,I) - 2.0*DIVDF1
     C(3,I-1) = 2.0 * (DIVDF1-C(2,I-1)-DIVDF3) / DTAU
     C(4,I-1) = (DIVDF3/DTAU) * (6.0/DTAU)
  END DO

  !     * ADD THE CURVATURE AT THE LAST POINT IN THE THIRD POSITION OF THE
  !       LAST NODE *

  C(3,N) = C(3,L) + (TAU(N)-TAU(L)) * C(4,L)


  !     * ADD THE MEAN VALUE OF THE ENTIRE INTERVAL IN THE FOURTH POSITION OF
  !       THE LAST NODE.  MEAN VALUE IS CALCULATED AS THE INTEGRAL OVER THE
  !       INTERVAL DIVIDED BY THE LENGTH OF THE INTERVAL. *

  C(4,N) = (0.0,0.0)
  DO I = 1,L                            ! INTEGRATE OVER THE INTERVAL
     DTAU = TAU(I+1) - TAU(I)
     C(4,N) = C(4,N) + DTAU*(C(1,I) + DTAU*(C(2,I)/2.0 + &
          DTAU*(C(3,I)/6.0 + DTAU*C(4,I)/24.0)))
  END DO
  C(4,N) = C(4,N) / (TAU(N)-TAU(1))        ! DIVIDE BY LENGTH OF INTERVAL

  RETURN
END SUBROUTINE CSPLINE



SUBROUTINE VSPLINE (TAU, C, M, MDIM, F, N)

  !     VSPLINE CALCULATES THE CUBIC SPLINE VALUES FOR A SET OF N POINTS
  !     IN F FROM THE M-POINT CUBI! SPLINE FIT IN ! AND THE NODES IN TAU.
  !     THE POINTS ARE RETURNED IN F.  ALL OF THE POINTS IN F MUST LIE
  !     BETWEEN TAU(1) AND TAU(M).

  !     * * * * * * * * * * * * *   WARNINGS   * * * * * * * * * * * * *

  !     POINTS OUTSIDE OF THE SPLINE FIT REGION ARE EXTRAPOLATED FROM THE END
  !     INTERVALS.  THIS CAN RESULT IN WILD VALUES IF EXTRAPOLATED TOO FAR.
  !     ALSO THE POINTS MUST BE IN STRICTLY ASCENDING ORDER, IF NOT THE
  !     POINTS WHICH ARE OUT OF ORDER WILL BE EXTRAPOLATED FROM THE CURRENT
  !     INTERVAL AGAIN RESULTING IN WILD VALUES.

  INTEGER, INTENT(IN) :: M, N, MDIM
  REAL    (KIND=8), INTENT(IN) :: TAU(M)
  COMPLEX (KIND=8), INTENT(IN) :: C(4,MDIM)
  COMPLEX (KIND=8), INTENT(INOUT) :: F(N)

  ! Local variables
  INTEGER :: I, J, J1
  REAL (KIND=8) :: H

  J = 1
  DO I = 1,N
10   J1 = J + 1
     IF (TAU(J1) < REAL(F(I)) .AND. J1 < M) THEN ! CHECK TO MAKE SURE
        J = J + 1                                ! THIS POINT IS NOT
        GO TO 10                                 ! IN THE NEXT INTERVAL.
     END IF
     H = DBLE (F(I)) - TAU(J)              ! DISTANCE FROM START OF INTERVAL
     F(I) = SPLINE (C(1,J), H)
  END DO
  RETURN
END SUBROUTINE VSPLINE


! **********************************************************************C
      FUNCTION SPLINE ( C, H )

!     THIS FUNCTION EVALUATES THE SPLINE AT THE POINT H

      COMPLEX (KIND=8), INTENT(IN) :: C(4)
      REAL (KIND=8), INTENT(IN) :: H
      COMPLEX (KIND=8) :: SPLINE

      SPLINE = C(1) + H * ( C(2) + H * ( C(3) / 2.0 + H * C(4) / 6.0 ) )
      RETURN
      END FUNCTION SPLINE

      FUNCTION SPLINEX ( C, H )

!     THIS FUNCTION EVALUATES THE SPLINE DERIVATIVE AT THE POINT H

      COMPLEX (KIND=8), INTENT(IN) :: C(4)
      REAL (KIND=8), INTENT(IN) :: H
      COMPLEX (KIND=8) :: SPLINEX

      SPLINEX = C(2) + H * ( C(3) + H * C(4) / 2.0 )
      RETURN
      END FUNCTION SPLINEX

      FUNCTION SPLINEXX ( C, H )

!     THIS FUNCTION EVALUATES THE SPLINE 2ND DERIVATIVE AT THE POINT H

      COMPLEX (KIND=8), INTENT(IN) :: C(4)
      REAL (KIND=8), INTENT(IN) :: H
      COMPLEX (KIND=8) :: SPLINEXX

      SPLINEXX = C(3) + H * C(4)
      RETURN
      END FUNCTION SPLINEXX
! **********************************************************************C
      SUBROUTINE SPLINEALL ( C, H, F, FX, FXX )

!     THIS ROUTINE EVALUATES THE
!        SPLINE,
!        SPLINE DERIVATIVE, AND
!        SPLINE 2ND DERIVATIVE AT THE POINT H

      COMPLEX (KIND=8), INTENT(IN) :: C(4)
      REAL (KIND=8), INTENT(IN) :: H
      COMPLEX (KIND=8), INTENT(OUT) :: F, FX, FXX

      REAL (KIND=8), PARAMETER :: HALF = 0.5, SIXTH = 1.0 / 6.0

      F   = C(1) + H * ( C(2) + H * ( HALF * C(3) + SIXTH * H * C(4) ) )
      FX  = C(2) + H * ( C(3) + H * HALF * C(4) )
      FXX = C(3) + H * C(4)

      RETURN
      END SUBROUTINE SPLINEALL

END MODULE splinec