analytic formula for the conical seamount
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=8), | intent(out) | :: | z_xx | |||
real(kind=8), | intent(out) | :: | z_xy | |||
real(kind=8), | intent(out) | :: | z_yy | |||
real(kind=8), | intent(out) | :: | nBdry(3) | |||
real(kind=8), | intent(in) | :: | xs(3) | |||
real(kind=8), | intent(in) | :: | xray(3) | |||
character(len=3), | intent(in) | :: | BotTop |
SUBROUTINE ConeFormulas3D( z_xx, z_xy, z_yy, nBdry, xs, xray, BotTop ) !! analytic formula for the conical seamount REAL (KIND=8), INTENT( IN ) :: xs( 3 ), xray( 3 ) CHARACTER (LEN=3), INTENT( IN ) :: BotTop ! Flag indicating bottom or top reflection REAL (KIND=8), INTENT( OUT ) :: z_xx, z_xy, z_yy, nBdry( 3 ) REAL (KIND=8) :: theta, phi, Radius, x, y, RLen IF ( BotTop == 'BOT' ) THEN phi = 15 * DegRad ! 15 degree angle of seamount x = xray( 1 ) y = xray( 2 ) theta = atan2( y, x ) ! bearing from origin (center of cone) to ray ! could write the folowing in terms of x, y, and z ... nBdry = [ -cos( theta ) * sin( phi ), -sin( theta ) * sin( phi ), cos( phi ) ] ! unit normal to bdry ! curvatures Radius = SQRT( x ** 2 + y ** 2 ) ! radius of seamount at the bounce point ! z = z_xx / 2 * x^2 + z_xy * xy + z_yy * y^2 ! coefs are the kappa matrix RLen = SQRT( 1 + TAN( phi ) ** 2 ) ! 1 + fx^2 + fy^2 z_xx = y * y / Radius**3 * tan( phi ) / RLen z_xy = - x * y / Radius**3 * tan( phi ) / RLen z_yy = x * x / Radius**3 * tan( phi ) / RLen END IF END SUBROUTINE ConeFormulas3D