analytic formula for the conical seamount
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=8), | intent(out) | :: | z_xx | |||
real(kind=8), | intent(out) | :: | z_xy | |||
real(kind=8), | intent(out) | :: | z_yy | |||
real(kind=8), | intent(out) | :: | nBdry(2) | |||
real(kind=8), | intent(in) | :: | xs(3) | |||
real(kind=8), | intent(in) | :: | tradial(2) | |||
real(kind=8), | intent(in) | :: | xray(2) | |||
character(len=3), | intent(in) | :: | BotTop |
SUBROUTINE ConeFormulas2D( z_xx, z_xy, z_yy, nBdry, xs, tradial, xray, BotTop ) !! analytic formula for the conical seamount REAL (KIND=8), INTENT( IN ) :: xs( 3 ), tradial( 2 ), xray( 2 ) CHARACTER (LEN=3), INTENT( IN ) :: BotTop ! Flag indicating bottom or top reflection REAL (KIND=8), INTENT( OUT ) :: z_xx, z_xy, z_yy, nBdry( 2 ) REAL (KIND=8) :: nBdry3dCone( 3 ), theta, phi, Rray, Radius, x, y ! for cone reflection IF ( BotTop == 'BOT' ) THEN phi = 15 * DegRad ! 15 degree angle of seamount Rray = xray( 1 ) ! cylindrical range of ray from source ! get bearing from cone to ray using (x,y) coordinate of the ray x = xs( 1 ) + Rray * tradial( 1 ) y = xs( 2 ) + Rray * tradial( 2 ) theta = atan2( y, x ) nBdry3dCone = [ -cos( theta ) * sin( phi ), -sin( theta ) * sin( phi ), cos( phi ) ] ! nBdry3dCone = -[ -cos( theta ) * tan( phi ), -sin( theta ) * tan( phi ), 1.0D0 ] ! nBdry3dCone = -[ ray2D( is )%x( 1 ), ray2D( is )%x( 2 ), -1.0D0 ] ! nBdry3dCone = NBdry3dCone / NORM2( NBdry3dCone ) nBdry( 1 ) = DOT_PRODUCT( nBdry3dCone( 1 : 2 ), tradial ) nBdry( 2 ) = nBdry3dCone( 3 ) ! curvatures Radius = SQRT( x ** 2 + y ** 2 ) ! radius of seamount at the bounce point ! z = z_xx / 2 * x^2 + z_xy * xy + z_yy / 2 * y^2; coefs are the kappa matrix z_xx = y * y / Radius**3 * tan( phi ) z_xy = - x * y / Radius**3 * tan( phi ) z_yy = x * x / Radius**3 * tan( phi ) END IF END SUBROUTINE ConeFormulas2D