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1 Concept 1.1.1: Introduction
1.1 Example 1: Placeholder
This section will contain worked examples for the Introduction concept.

Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

2 Concept 1.1.2: Concepts
2.1 Example 1: Placeholder
This section will contain worked examples for the Concepts concept.

Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

3 Concept 1.1.3: State Space
3.1 Example 1: Placeholder
This section will contain worked examples for the State Space concept.

Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

4 Concept 1.1.4: Modelling
4.1 Example 1: Free Falling Skydiver with Nonlinear Drag
Problem: A skydiver of mass 𝑚 = 80 kg jumps from an aircraft. Model the vertical motion of
the skydiver considering gravitational force and nonlinear air drag. The drag force is proportional
to the square of velocity: 𝐹𝑑 = 1

2𝜌𝐶𝑑𝐴𝑣2, where 𝜌 = 1.2 kg/m3 is air density, 𝐶𝑑 = 1.0 is the
drag coefficient, and 𝐴 = 0.5 m2 is the cross-sectional area.

Solution: Applying Newton’s second law in the vertical direction (taking downward as posi-
tive):

𝑚𝑑𝑣
𝑑𝑡 = 𝑚𝑔 − 1

2𝜌𝐶𝑑𝐴𝑣2 (1)

This can be rewritten as:
𝑑𝑣
𝑑𝑡 = 𝑔 − 𝜌𝐶𝑑𝐴

2𝑚 𝑣2 (2)

Let 𝑘 = 𝜌𝐶𝑑𝐴
2𝑚 , then:

𝑑𝑣
𝑑𝑡 = 𝑔 − 𝑘𝑣2 (3)
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Figure 1: Free body diagram of a falling skydiver with forces acting on the body.

Substituting the given values:

𝑘 = 1.2 × 1.0 × 0.5
2 × 80 = 0.00375 m−1 (4)

The terminal velocity occurs when 𝑑𝑣
𝑑𝑡 = 0:

𝑣terminal = √𝑔
𝑘 = √ 9.81

0.00375 ≈ 51.1 m/s (5)

The state-space model is:

𝑑𝑣
𝑑𝑡 = 9.81 − 0.00375𝑣2 (6)
𝑑𝑦
𝑑𝑡 = 𝑣 (7)

This is a nonlinear first-order differential equation in 𝑣 and can be solved numerically or
analytically using separation of variables.

4.2 Example 2: Flow Rate and Temperature in a Pipe
Problem: Consider a heated pipe system where fluid flows at rate 𝑞 (m3/s) through a pipe
of volume 𝑉 = 0.1 m3. The fluid enters at temperature 𝑇in and is heated by a heater providing
power 𝑃 (W). Model the outlet temperature 𝑇 considering heat input and convective flow. The
fluid has density 𝜌 = 1000 kg/m3 and specific heat capacity 𝑐𝑝 = 4200 J/(kg·K).

Volume 𝑉
𝑞, 𝑇in 𝑞, 𝑇

𝑃
Heater

Figure 2: Schematic of a heated pipe system with flow rate and temperature dynamics.
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Solution: Energy balance for the fluid in the pipe:

𝑑
𝑑𝑡(𝜌𝑉 𝑐𝑝𝑇 ) = 𝜌𝑞𝑐𝑝𝑇in − 𝜌𝑞𝑐𝑝𝑇 + 𝑃 (8)

Assuming constant volume and properties:

𝜌𝑉 𝑐𝑝
𝑑𝑇
𝑑𝑡 = 𝜌𝑞𝑐𝑝(𝑇in − 𝑇 ) + 𝑃 (9)

Dividing by 𝜌𝑉 𝑐𝑝:

𝑑𝑇
𝑑𝑡 = 𝑞

𝑉 (𝑇in − 𝑇 ) + 𝑃
𝜌𝑉 𝑐𝑝

(10)

Let 𝜏 = 𝑉
𝑞 be the residence time, then:

𝑑𝑇
𝑑𝑡 = 1

𝜏 (𝑇in − 𝑇 ) + 𝑃
𝜌𝑉 𝑐𝑝

(11)

For 𝑞 = 0.01 m3/s:

𝜏 = 0.1
0.01 = 10 s (12)

The state-space model is:

𝑑𝑇
𝑑𝑡 = 0.1(𝑇in − 𝑇 ) + 𝑃

420000 (13)

This is a first-order linear system with two inputs (𝑇in and 𝑃 ) and one state (𝑇 ).
At steady state (𝑑𝑇

𝑑𝑡 = 0):

𝑇ss = 𝑇in + 𝑃
𝜌𝑞𝑐𝑝

(14)

4.3 Example 3: Predator-Prey Population Dynamics (Foxes and Rabbits)
Problem: Model the population dynamics of rabbits (prey) and foxes (predators) in an ecosys-
tem. Let 𝑅(𝑡) be the rabbit population and 𝐹(𝑡) be the fox population. Use the Lotka-Volterra
model with the following assumptions:

• Rabbits reproduce at rate 𝛼 = 0.1 per month in the absence of predators

• Foxes prey on rabbits at rate 𝛽 = 0.02 per month per rabbit

• Foxes die at rate 𝛾 = 0.4 per month without food

• Fox population grows at rate 𝛿 = 0.01 per rabbit consumed
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𝑅(𝑡)
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Figure 3: Population dynamics showing interaction between rabbits (prey) and foxes (predators).

Solution: The Lotka-Volterra equations are:

𝑑𝑅
𝑑𝑡 = 𝛼𝑅 − 𝛽𝑅𝐹 (15)
𝑑𝐹
𝑑𝑡 = −𝛾𝐹 + 𝛿𝑅𝐹 (16)

Substituting the given parameters:

𝑑𝑅
𝑑𝑡 = 0.1𝑅 − 0.02𝑅𝐹 (17)
𝑑𝐹
𝑑𝑡 = −0.4𝐹 + 0.01𝑅𝐹 (18)

This is a nonlinear system with two state variables (𝑅, 𝐹).
Equilibrium points occur when 𝑑𝑅

𝑑𝑡 = 𝑑𝐹
𝑑𝑡 = 0:

Equilibrium 1: 𝑅 = 0, 𝐹 = 0 (extinction)
Equilibrium 2: Setting both derivatives to zero:

0.1𝑅 − 0.02𝑅𝐹 = 0 ⇒ 𝑅(0.1 − 0.02𝐹) = 0 (19)
−0.4𝐹 + 0.01𝑅𝐹 = 0 ⇒ 𝐹(−0.4 + 0.01𝑅) = 0 (20)

For non-trivial solution:

0.1 − 0.02𝐹 = 0 ⇒ 𝐹 ∗ = 5 (21)
−0.4 + 0.01𝑅 = 0 ⇒ 𝑅∗ = 40 (22)

The equilibrium point is (𝑅∗, 𝐹 ∗) = (40, 5). This system exhibits periodic oscillations around
this equilibrium, characteristic of predator-prey dynamics.

4.4 Example 4: Operational Amplifier Inverting Configuration
Problem: Model an operational amplifier in the inverting configuration with input resistance
𝑅1 = 10 kΩ and feedback resistance 𝑅𝑓 = 100 kΩ. Assume the op-amp has finite open-loop
gain 𝐴 = 105 and a single-pole frequency response with bandwidth 𝜔0 = 10 rad/s. Derive the
closed-loop transfer function.

Solution: For an ideal op-amp with finite gain 𝐴:

𝑣out = −𝐴𝑣𝑛 (23)

where 𝑣𝑛 is the voltage at the inverting input (node voltage).
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Figure 4: Inverting operational amplifier configuration with input and feedback resistors.

Applying Kirchhoff’s current law at the inverting input node:
𝑣in − 𝑣𝑛

𝑅1
+ 𝑣out − 𝑣𝑛

𝑅𝑓
= 0 (24)

Substituting 𝑣out = −𝐴𝑣𝑛:

𝑣in − 𝑣𝑛
𝑅1

+ −𝐴𝑣𝑛 − 𝑣𝑛
𝑅𝑓

= 0 (25)

Solving for 𝑣𝑛:

𝑣in − 𝑣𝑛 + 𝑅1
𝑅𝑓

(−𝐴𝑣𝑛 − 𝑣𝑛) = 0 (26)

𝑣in = 𝑣𝑛 (1 + 𝑅1
𝑅𝑓

(𝐴 + 1)) (27)

𝑣𝑛 = 𝑣in

1 + 𝑅1
𝑅𝑓

(𝐴 + 1)
(28)

The closed-loop gain is:

𝑣out
𝑣in

= −𝐴𝑣𝑛
𝑣in

= −𝐴
1 + 𝑅1

𝑅𝑓
(𝐴 + 1)

(29)

For large 𝐴, this simplifies to:

𝑣out
𝑣in

≈ −𝐴
𝑅1
𝑅𝑓

𝐴
= −𝑅𝑓

𝑅1
(30)

With 𝑅1 = 10 kΩ and 𝑅𝑓 = 100 kΩ:

𝑣out
𝑣in

≈ −10 (31)

For frequency response with single-pole dynamics, let 𝐴(𝑠) = 𝐴0
1+𝑠/𝜔0

:

𝑣out(𝑠)
𝑣in(𝑠) = −𝑅𝑓/𝑅1

1 + 1+𝑅𝑓/𝑅1
𝐴0

(1 + 𝑠/𝜔0)
(32)

This shows that the op-amp circuit acts as an inverting amplifier with gain determined pri-
marily by the resistor ratio, with finite bandwidth effects from the op-amp’s frequency response.
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