Worked Examples

Topic 1.1: Introduction and System Modelling
ENGM X304 — Applied Control Systems

Assoc. Prof. William Robertson Dr Sean McGowan
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1 Concept 1.1.1: Introduction

1.1 Example 1: Placeholder

This section will contain worked examples for the Introduction concept.
Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

2 Concept 1.1.2: Concepts

2.1 Example 1: Placeholder

This section will contain worked examples for the Concepts concept.
Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

3 Concept 1.1.3: State Space
3.1 Example 1: Placeholder
This section will contain worked examples for the State Space concept.

Problem: Example problem statement will be added here.

Solution: Example solution will be added here.

4 Concept 1.1.4: Modelling

4.1 Example 1: Free Falling Skydiver with Nonlinear Drag

Problem: A skydiver of mass m = 80 kg jumps from an aircraft. Model the vertical motion of
the skydiver considering gravitational force and nonlinear air drag. The drag force is proportional
to the square of velocity: F,; = %pCdAUQ, where p = 1.2 kg/m? is air density, C;; = 1.0 is the
drag coefficient, and A = 0.5 m? is the cross-sectional area.

Solution: Applying Newton’s second law in the vertical direction (taking downward as posi-
tive):

dv 1
m— =mg— §pC’dAv2 (1)

This can be rewritten as:

dv pC A ,

— =qg— 2

dt 2m v 2)
Let k = pg;flA, then:

dv 9
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Figure 1: Free body diagram of a falling skydiver with forces acting on the body.

Substituting the given values:

1.2 x1.0x0.5
k=""""""=0.00375 m ! 4
2 % 80 o )
The terminal velocity occurs when % =0:

g [ 9.81
Uterminal - % - 000375 ~ 511 m/S (5)

The state-space model is:

d

% 9.81 — 0.0037502 (6)
dt

dy

dy _ 7
= (7)

This is a nonlinear first-order differential equation in v and can be solved numerically or
analytically using separation of variables.

4.2 Example 2: Flow Rate and Temperature in a Pipe

Problem: Consider a heated pipe system where fluid flows at rate ¢ (m?®/s) through a pipe
of volume V = 0.1 m3. The fluid enters at temperature T}, and is heated by a heater providing
power P (W). Model the outlet temperature T considering heat input and convective flow. The
fluid has density p = 1000 kg/m?® and specific heat capacity c, = 4200 J/(kg - K).

q, Tin q,T
— Volume V' —
Heater

Figure 2: Schematic of a heated pipe system with flow rate and temperature dynamics.
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Solution: Energy balance for the fluid in the pipe:

d
7PV ) = pac, Ty — pac,T + P (8)

Assuming constant volume and properties:

ar
pVep—y = pacy(Ty —T) + P (9)
Dividing by pVe,:
dT" ¢ P
= = 2(T. —-T 10
dt V( mn >+ pvcp ( )

Let 7 = % be the residence time, then:

ar 1 P
— =—(T;,—T 11
g =7 T+ (11)
For ¢ = 0.01 m3/s:
0.1
=— =10 12
TToor - ° (12)
The state-space model is:
ar P
— =0T, - T 13
dt (Tin )+ 420000 (13)
This is a first-order linear system with two inputs (7}, and P) and one state (7).
At steady state (4F = 0):
P
TSS = CZjin + (14)
pPac,

4.3 Example 3: Predator-Prey Population Dynamics (Foxes and Rabbits)

Problem: Model the population dynamics of rabbits (prey) and foxes (predators) in an ecosys-
tem. Let R(t) be the rabbit population and F'(t) be the fox population. Use the Lotka-Volterra
model with the following assumptions:

e Rabbits reproduce at rate & = 0.1 per month in the absence of predators
o Foxes prey on rabbits at rate § = 0.02 per month per rabbit
e Foxes die at rate v = 0.4 per month without food

e Fox population grows at rate § = 0.01 per rabbit consumed
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Rabbits _BRF Foxes
R(t) YORF  F(t)
—~F

Figure 3: Population dynamics showing interaction between rabbits (prey) and foxes (predators).

Solution: The Lotka-Volterra equations are:

dR

— =aR — SRF 15
=R § (15)
dF
— = —yF +0RF (16)
dt
Substituting the given parameters:
d
d—lf =0.1R —0.02RF (17)
dF

This is a nonlinear system with two state variables (R, F').

Equilibrium points occur when %% = % =0
Equilibrium 1: R =0, F = 0 (extinction)

Equilibrium 2: Setting both derivatives to zero:

0.1R—0.02RF=0 = R(0.1—0.02F) =0 (19)
—04F +0.01RF=0 = F(—04+0.01R)=0 (20)

For non-trivial solution:

01—002F=0 = F*= (21)
—044001R=0 = R*=40 (22)

The equilibrium point is (R*, F*) = (40, 5). This system exhibits periodic oscillations around
this equilibrium, characteristic of predator-prey dynamics.

4.4 Example 4: Operational Amplifier Inverting Configuration

Problem: Model an operational amplifier in the inverting configuration with input resistance
R, =10 k2 and feedback resistance R; = 100 k2. Assume the op-amp has finite open-loop
gain A = 10° and a single-pole frequency response with bandwidth w, = 10 rad/s. Derive the
closed-loop transfer function.

Solution: For an ideal op-amp with finite gain A:

Uout = _Avn (23)

where v,, is the voltage at the inverting input (node voltage).
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———o0 Uoyt

Figure 4: Inverting operational amplifier configuration with input and feedback resistors.

Applying Kirchhoff’s current law at the inverting input node:

Vipy — VU (%

in n out — Yn _ 0 24
R R (24)
Substituting v, = —Av,,:
Vyy — U —Av, —v
m " n " — 0 25
i 5 (25)
Solving for v,,:
Uiy — VU t+ &(_Avn - vn) =0 (26)
Ry
Ry
Uin = Un 1+ 7(“4 + 1) (27)
Ry
V.
_ m 28)
= — (
1+ R—f(A +1)
The closed-loop gain is:
Vout _ Av, —A (29)
) s
Vi Vn 1+ A+

For large A, this simplifies to:

out ~ - - __J (30)

Uout
=~ —10 31
o (31)
For frequency response with single-pole dynamics, let A(s) = 1 +1:7W0:
Uout(‘S) — _Rf/Rl (32)
. 1+R,/R
Uiy (5) 1—|—$(1+s/w0)

This shows that the op-amp circuit acts as an inverting amplifier with gain determined pri-
marily by the resistor ratio, with finite bandwidth effects from the op-amp’s frequency response.
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